◎研究方向 1.生态数学中的非线性偏微分方程 2.非线性动力系统 ◎学习与工作经历 1999.9-2003.7,烟台师范学院,理学学士; 2003.9-2006.7,武汉大学,理学硕士; 2010.3-2009.8,哈尔滨工业大学,理学博士; 2006.7-2016.12,中国石油大学(华东),应用数学系,讲师; 2016.12至今,中国石油大学(华东),应用数学系,副教授。
◎主讲课程 1.主讲本科生必修课。《线性代数》《计算方法》《动力系统初步》等课程 2.主讲研究生《定性理论》《非线性椭圆型方程组》等课程
◎指导研究生
指导硕士研究生4名,分别是范秀贞(2019)吕志毅(2020)丁梦月(2022)孙嘉宁(2023)。
◎承担和参与项目 1.近年来,主持的代表性科研项目: (1)生态学中的趋化模型的整体解和稳态解分析,山东省自然科学基金-面上项目,2022-2024。 (2)几类偏微分方程组的动力学行为,中央高校基础研究专项基金,2017-2019。 (3)反应扩散捕食模型的平衡解及分支分析,国家自然科学基金青年基金项目,2016-2018。 (4)几类反应扩散捕食模型的平衡解分析,中央高校基础研究专项基金,2015-2016。 2.近年来,参与的代表性科研项目: (1)反应扩散方程组非齐次稳态解的存在性、稳定性及分支研究,山东省自然科学基金-面上项目,2019-2022。 (2)随机生物数学模型平稳分布及周期解研究,国家自然科学基金青年基金项目,2019-2021。 (3)变区域上非线性偏微分方程解的动力学行为研究,国家自然科学基金青年基金项目,2017-2019。 ◎获奖情况(除教师个人获奖之外,还包含指导学生获奖情况) 1. 第十二届山东省大学生数学竞赛(非数学组)山东省一等奖,省部级,2021,指导教师。
2.美国大学生数学建模竞赛H奖,国家级,2022,指导教师。 3.美国大学生数学建模竞赛H奖,国家级,2023,指导教师。
◎论文 1.第一作者主要论文: (1)Yan Li, Zhiyi Lv, Fengrong Zhang, Hui Hao, Bifurcation analysis of a diffusive predator–prey model with hyperbolic mortality and prey-taxis.International Journal of Biomathematics, 2024(17) (2)Yan Li, Zhiyi lv, Xiuzhen Fan, Bifurcations of a diffusive predator–prey model with prey-stage structure and prey-taxis,Mathematical Methods in the Applied Science,2023(46) (3)Yan Li, Sanyun Li, Fengrong Zhang, Dynamics of a diffusive predator-prey model with herd behavior. Nonlinear Analysis: Modelling and Control, 2020(25) (4)Yan Li, Sanyun Li, Jingfu Zhao. Global stability and Hopf bifurcation of a diffusive predator-prey model with hyperbolic mortality and prey harvesting, Nonlinear Analysis: Modelling and Control, 2017(22) (5)Yan Li, Hopf bifurcations in general systems of Brusselator type,Nonlinear Analysis: Real World Applications,2016(28) (6)Yan Li,Dynamics of a delayed diffusive predator-prey model with hyperbolic mortality,Nonlinear Dynamics,2016(85) (7)Yan Li,Xinhong Zhang, Bingchen Liu, Global stability and stationary pattern of a diffusive prey-predator model with modified Leslie-Gower term and Holling II functional response, Journal of Nonlinear Science and Applications, 2016(9): (8)Yan Li, Mingxin Wang, Dynamics of a Diffusive Predator-Prey Model with Modified Leslie-Gower Term and Michaelis-Menten Type Prey Harvesting, Acta Applicandae Mathematicae,2015,140 (9)Yan Li, Mingxin Wang, Hopf bifurcation and global stability of a delayed predator-rey model with prey harvesting, Computers and Mathematics with Applications, 2015(69) (10)Yan Li, Mingxin Wang,Stationary pattern of a diffusive prey–predator model with trophic intersections of three levels,Nonlinear Analysis: Real World Applications,2013(14) (11)Yan Li, Steady-state solution for a general Schnakenberg model, Nonlinear Analysis: Real World Applications,2011(12) (12)Yan Li, Non-uniform dependence for the Cauchy problem of the general b-equation, Journal of Mathematical Physics, 2011(52) (13)李燕,刘伟安,黄启华, 一类具有无穷时滞竞争扩散模型的周期解的存在性,数学杂志,2007(27) (14)李燕,刘伟安,孔杨, Existence of solution for predator-prey system with size-structure,数学杂志,2010(30) 2.第二作者(通讯作者)主要论文: (1)Xiuzhen Fan, Feng Zhou, Yan Li, Stationary pattern and Hopf bifurcation of a diffusive predator–prey model, Applicable Analysis,2022(102) (2)Fengrong Zhang,Yan Li. Stability and Hopf bifurcation of a delayed-diffusive predator-prey model with hyperbolic mortality and nonlinear prey harvesting. Nonlinear Dynamics. 2017(88) (3)Min Zhang,Yi Wang,Yan Li, Reducibility and quasi-periodic solutions for a two dimensional beam equation with quasi-periodic in time potential. AIMS Mathematics, 2020(6) (4)Fengrong Zhang ,Yan Li,Changpin Li,Hopf bifurcation in a delayed diffusive Leslie-gower predator-prey model with herd behavior. International Journal of Bifurcation and Chaos. 2019(29) (5)Fengrong Zhang, Xinhong Zhang,Yan Li,Changpin Li, Hopf bifurcation of a delayed predator-prey model with non-constant death rate and constant-rate prey-harvesting. International Journal of Bifurcation and Chaos, 2018(28) (6)Xinhong Zhang, Yan Li, Daqing Jiang,Dynamics of a stochastic Holling type II predator-prey model with hyperbolic mortality, Nonlinear Dynamics.2016. (7)Mingchuan Li, Shuanshi Fan, Yuliang Su, Fuhai Xu,Yan Li,Mingjing Lu, Guanglong Sheng, Ke Yan. The Stefan moving boundary model for the heat-dissociation hydrate with a density difference. Energy. 2018(160) (8)Weigang Wang,Yan Li, Dihe Hu. Existence of population-size-dependent branching chains in random environments,Acta Mathematica Scientia, 2010(30) ◎著作 1.王光辉,张天德,孙钦福,谭蕾,李燕,周峰,《经济数学-线性代数》,名师名校新形态通识教育系列教材,人民邮电出版社,2022年。 ◎学术兼职
担任多个SCI期刊审稿人。 |