报告题目:On order reduced schemes for quad-curl problems(四重旋度问题的降阶格式研究)
报告人:张硕中科院数学与系统科学研究院
报告时间:2019年6月17日上午10:00-11:00
报告地点:文理楼254
报告摘要:In this talk the order reduced finite element discretization of the quad-curl problem (as a fourth-order problem) is discussed. Two model problems are studied and two kinds of stable order reduced formulations are presented. These order reduced formulations are equivalent to the primal formulations without extra regularity results. Finite element schemes are constructed based on the order reduced formulations and optimal convergence rate can be proved. The order reduced formulations use first order Sobolev spaces only and admit discretizations with low-order existing finite element spaces. The model problems can thus be connected to classical problems and implemented via popular finite element packages. Further nested discretizations are easier to establish and the order reduced formulation is potentially fit for multigrid methods for the source problem and particularly the eigenvalue problem. As a background and also a foreground the methodology to design order reduced formulation is dicussed for general fourth order problems.
报告人简介:
张硕,中科院数学与系统科学研究员副教授。2003年毕业于山东大学数学学院,获理学学士学位。2008年毕业于北京大学数学学院,获博士学位;后到宾夕法尼亚州立大学做博士后,师从徐进超教授。主要从事偏微分方程数值算法研究,包括有限元方法、多水平方法及结构性。主持国家自然科学基金面上项目、青年项目各1项,在SIAM Numer Analys,Numer. Math, J. Comput. Phys等国内外高质量学术期刊发表论文20余篇,荣获中国计算数学学会优秀青年论文奖二等奖。
理学院 科技处