报告人: 张彬林
时间:11月12日16:00-17:00
地点:文理楼254
报告题目:On Kirchhoff-type evolutionproblems involving the fractionalLaplacian
报告摘要:In this talk, we first consider a diffusion model of Kirchhoff-type driven by fractional Laplace operator. Under some appropriate conditions, the local existence of non-negative solutions is obtained by employing the Galerkin method. Then, by means of a differential inequality technique, we prove that the local non-negative solutions blow up in finite time with arbitrary negative initial energy and suitable initial values. Moreover, we give an estimate for the lower and upper bounds of the blow-up time. The main feature of our problems is that the Kirchhoff termmay vanish at zero. Finally, we present some recent results for Kirchhoff-type evolution problems involving the fractionalLaplacian.
报告人简介:
张彬林,山东科技大学教授,博士生导师。博士毕业于哈尔滨工业大学,先后在意大利地中海研究中心和南开大学陈省身数学研究所做过两站博士后。当前的研究兴趣是变分和拓扑方法及其在数学物理问题中的应用,特别在基尔霍夫型分数阶拉普拉斯方程解的存在性、多解性等方面取得了一系列重要的研究成果。在《Calc. Var. PDEs》、《Nonlinearity》、《J. Differential Equations》、《Disc. Contin. Dyn. Syst.》、《Sci. ChinaMath.》、《Proc. Roy. Soc. Edinb., A》等学术期刊上发表SCI论文100余篇,并担任多个SCI期刊的编委。主持和参与4项国家自然科学基金项目,在2019年和2021年分别入选科睿唯安“全球高被引科学家”名单。