报告时间:2022年8月25号(星期四)上午8:30
报告地点:腾讯会议(会议号:263-999-677)
主要内容:
(1)报告题目:Infinite families of 3-designs and 2-designs from almost MDS codes
报告人:曹喜望
报告人简介:曹喜望,南京航空航天大学理学院教授,博士生导师。师从樊恽教授获得硕士学位,师从北京大学丘维声教授获得博士学位。研究方向是有限域及其应用,在差集、指数和、有限域上的多项式、量子信息处理以及代数编码方面做出了出色的工作,其研究成果发表在相关领域的权威期刊上,发表学术论文130余篇。曹喜望教授先后多次访问过Sydney大学、南洋理工大学,香港科技大学、台湾中央研究院、北京国际数学中心、南开大学陈省身数学研究所等。2010年入选江苏省“青蓝工程”学术带头人。主持国家自然科学基金面上项目和省部级科研项目多项。2017年获得江苏省科学技术奖。
报告摘要:
Combinatorial designs are closely related to linear codes. Recently, some near MDS codes were employed to construct t-designs by Ding and Tang, which settles the question regarding whether there exists an infinite family of near MDS codes holding an infinite family of t-designs for t>=2. In this talk, I will introduce some constructions of infinite families of 3-designs and 2designs from special equations overfinite fields. First, I will present an infinite family of almost MDS codes over GF(pm) holding an infinite family of 3-designs. Then I will provide an infinite family of almost MDS codes over GF(pm) holdingan infinite family of 2 designs for any Field GF(q). In particular, some of these almost MDS codes are near MDS. Second, I will present an infinite family of near MDS codes over GF(2m) holding an infinite family of 3-designs by considering the number of roots of a special linearized polynomial. Compared to previous constructions of 3-designs or 2designs from linear codes, the parameters of some of our designs are new and flexible. This is a joint work with Guangkui Xu and Longjiang Qu.
(2)报告题目:How Much Entanglement Does a Quantum Code Need?
报告人:罗高骏
报告人简介:罗高骏,2019年于南京航空航天大学获得博士学位,现于新加坡南洋理工大学从事博士后研究,主要从事代数组合与代数编码的研究工作,在国内外著名期刊杂志发表学术论文30余篇,其中SCI、EI检索20多篇,是 IEEE Trans IT, IEEE Trans COM, Designs, Codes and Crypto, Finite Fields Appl, CCDS, Discrete Math, Quantum Information Processing等杂志的审稿人。2017年获得江苏省科学技术奖。担任美国数学评论和德国数学文摘评论员。
报告摘要:
In the setting of entanglement-assisted quantum error-correcting codes (EAQECCs), the sender and the receiver have access to pre-shared entanglement. Such codes promise better information rates or improved error handling properties. Entanglement incurs costs and must be judiciously calibrated in designing quantum codes with good performance, relative to their deployment parameters. Revisiting known constructions, we devise tools from classical coding theory to better understand how the amount of entanglement can be varied. We present three new propagation rules and discuss how each of them affects the error handling. Tables listing the parameters of the best performing qubit and qutrit EAQECCs that we can explicitly construct are supplied for reference and comparison.
理学院
2022年8月22日