【学术报告】离散贝叶斯网络分类器
发布人:赵振华  发布时间:2023-04-20   浏览次数:10


报告人:Pedro Larrañaga 院士

工作单位:马德里理工大学(西班牙)

报告题目:离散贝叶斯网络分类器

报告时间:2023428日(周五)14:30-15:30

报告链接:Teams Link

https://teams.microsoft.com/l/meetup-join/19%3aB4gmRcUATAMA2iJqi-xXvtfPFfTbxVJPxSW_pcAPBao1%40thread.tacv2/1638719716825?context=%7b%22Tid%22%3a%2222804ebb-30d5-47df-942f-f3a3722f0225%22%2c%22Oid%22%3a%2216a60c03-ad7a-4b85-a403-8ebd947e010c%22%7d 

内容摘要:

  本报告将首先介绍几种针对离散预测变量的贝叶斯网络分类器,分别是朴素贝叶斯、选择性朴素贝叶斯、半朴素贝叶斯、单依赖贝叶斯分类器、k-依赖贝叶斯分类器、贝叶斯网络增强朴素贝叶斯、基于马尔可夫毯的贝叶斯分类器、非限制贝叶斯分类器和贝叶斯多网。随后将介绍与上述模型相关的决策边界,模型的内在解释将通过一个来自神经解剖学的例子来展现。

个人简介:

  Pedro Larrañaga院士在巴利亚多利德大学获得数学(统计学)硕士学位,在巴斯克地区大学获得计算机科学博士学位(优秀奖),现任马德里理工大学计算机科学和人工智能专业的全职教授。Pedro Larrañaga院士的研究领域包括概率图形模型、元启发式优化方法、机器学习分类模型及其应用等领域,如生物医学、生物信息学、神经科学、工业4.0和体育。Pedro Larrañaga院士曾在高影响因子的期刊上发表200余篇论文,指导了30多篇博士论文。自2012年以来,Pedro Larrañaga院士是欧洲人工智能协会的研究员,并分别自2018年和2021年成为欧洲学术界和亚太人工智能协会的研究员,曾获2013年西班牙国家计算机科学奖,2018年西班牙人工智能协会奖,以及2020年新德里机器学习的Amity研究奖。最近,Pedro Larrañaga院士当选巴斯克地区科学、艺术和文学学院(Jakiunde)成员,并领导马德里ELLIS组织。


                                           【编辑:王健】

 

英文版:

Academic Report Notice of Pedro Larrañaga : Discrete Bayesian network classifiers

Speaker: Professor Pedro Larrañaga

TitleDiscrete Bayesian network classifiers

Time: 14:30-15:30, April 28th, 2023 (Friday)

Website: Teams Link

https://teams.microsoft.com/l/meetup-join/19%3aB4gmRcUATAMA2iJqi-xXvtfPFfTbxVJPxSW_pcAPBao1%40thread.tacv2/1638719716825?context=%7b%22Tid%22%3a%2222804ebb-30d5-47df-942f-f3a3722f0225%22%2c%22Oid%22%3a%2216a60c03-ad7a-4b85-a403-8ebd947e010c%22%7d 

Abstract: 

    During the talk, we will introduce several types of Bayesian network classifiers for discrete predictor variables: Naive Bayes, selective naive Bayes, seminaive Bayes, one-dependence Bayesian classifiers, k-dependence Bayesian classifiers, Bayesian network-augmented naive Bayes, Markov blanket-based Bayesian classifier, unrestricted Bayesian classifiers, and Bayesian multinets. The decision boundaries associated to each of these models will also be presented. The interpretation inherent in these models will be shown with an example from neuroanatomy.

Personal Introduction: 

    Pedro Larrañaga is Full Professor in Computer Science and Artificial Intelligence at the Universidad Politécnica de Madrid. He received the MSc degree in Mathematics (Statistics) from the University of Valladolid and the PhD degree in Computer Science from the University of the Basque Country (Excellence Award). His research interests are primarily in the areas of probabilistic graphical models, metaheuristics for optimization, machine learning classification models, and real applications, like biomedicine, bioinformatics, neuroscience, industry 4.0 and sports. He has published more than 200 papers in high impact factor journals and has supervised more than 30 PhD theses. He is fellow of the European Association for Artificial Intelligence since 2012 and fellow of the Academia European and of the Asia-Pacific Artificial Intelligence Association since 2018 and 2021 respectively. He has been awarded the 2013 Spanish National Prize in Computer Science, the prize of the Spanish Association for Artificial Intelligence in 2018 and the Amity Research Award in Machine Learning in New Delhi, in 2020. Recently he has been elected as member of Jakiunde, the Academy of Sciences, Arts and Letters of the Basque Country. He leads the ELLIS Unit Madrid.


                                                                                                                                [Editor:Jian Wang]