◎研究方向 1.微分方程与动力系统 ◎学习与工作经历 2000.9-2004.7,石油大学(华东),理学学士; 2006.9-2011.6,山东大学,理学博士; 2011.7-2022.12,中国石油大学(华东),应用数学系,讲师; 2023.1至今,中国石油大学(华东),应用数学系,副教授。
◎主讲课程 1.主讲本科生《概率论与数理统计》《线性代数》《泛函分析》等课程 2.主讲研究生《泛函分析》《经典力学的数学方法》等课程
◎指导研究生 累计指导硕士研究生1名。
◎承担和参与项目 1.近年来,主持的代表性科研项目:
(1)具有高阶非线性项的二维薛定谔方程的拟周期解,国家自然科学基金,2018-2020。 (2)带拟周期强迫项的非线性薛定谔方程的拟周期解及KAM理论,国家自然科学基金,2014。 (3)非线性项含有空间导数的二维梁方程的 KAM理论,山东省自然科学基金,2023-2025。 (4)具有时间强迫及空间变量的薛定谔方程的KAM理论,山东省自然科学基金,2016-2019。 (5)高维非线性波动方程的KAM理论,中央高校基本科研业务费专项资金项目,2014-2015。 (6)具有时间强迫和高阶非线性项的薛定谔方程的拟周期解,中央高校基本科研业务费专项资金项目,2019-2021。 (7)带导数的反转梁方程的KAM理论,中央高校基本科研业务费专项资金项目,2022-2024。 ◎获奖情况(除教师个人获奖之外,还包含指导学生获奖情况) (1)指导学生获全国数学建模竞赛国家级一等奖、山东省一等奖、山东省二等奖、山东省三等奖;
(2)指导学生获山东省数学竞赛一等奖。 ◎论文 1.第一作者主要论文: (1)M. Zhang, J. Si, KAM tori for the two-dimensional completely resonant Schrödinger equation with the general nonlinearity, Journal de Mathématiques Pures et Appliquées, 2023, 170: 150-230 (2)M. Zhang, J. Si, Construction of quasi-periodic solutions for the quintic Schrödinger equation on the two-dimensional torus T2, Trans. Amer. Math. Soc., 2021, 374: 4711–4780 (3)M. Zhang, Y. Wang, J. Rui, Quasi-periodic solutions for one dimensional Schrödinger equation with quasi-periodic forcing and Dirichlet boundary condition,Journal of Mathematical Physics,2023,64, 011509 (4)M. Zhang, J. Rui, Y. Li, J. Zhang, KAM tori for a two dimensional beam equation with a quintic nonlinear term and quasi-periodic forcing, Qualitative Theory of Dynamical Systems, 2022, 21,154 (5)M. Zhang, Y. Wang, Y. Li, Reducibility and quasi-periodic solutions for a two dimensional beam equation with quasi-periodic in time potential, AIMS Mathematics, 2021,6(1), 643–674 (6)M. Zhang , Z. Hu, Y. Chen, Invariant tori for a two-dimensional completely resonant beam equation with a quintic nonlinear term, Journal of Function Spaces, 2022, 2022, 7106366 (7)M. Zhang , Y. Chen, Z. Hu, KAM tori for a two-dimensional Boussinesq equation with quasi-periodic forcing, Journal of Nonlinear Functional Analysis, 2021, 2021,32 (8)M. Zhang, X. Wang, Z. Hu, Invariant tori for the quintic Schrödinger equation with quasi-periodic forcing on the two-dimensional torus under periodic boundary conditions, Journal of Nonlinear Functional Analysis, 2022, 2022, 12 (9)M. Zhang, Quasi-periodic solutions of two dimensional Schrödinger equations with Quasi-periodic forcing, Nonlinear Analysis: Theory, Method & Applications, 2016,135: 1-34. (10)M. Zhang, -solutions for the Second Type of Generalized Feigenbaum's Functional Equations, Acta Mathematica Sinica-English Series, 2014, 30(10): 1785-1794. (11)M. Zhang, Jianguo Si, Solutions for the -order Feigenbaum’s functional eqution, Annales Polonici Mathematici, 2014, 111(2): 183-195. (12)M. Zhang, SINGLE-VALLEY-EXTENDED CONTINUOUS SOLUTIONS FOR THE FEIGENBAUM’S FUNCTIONAL EQUATION , Demonstratio Mathematica, 2014, 47(3): 615-626. (13)张敏,司建国,一类推广后的Feigenbaum 函数方程的光滑解, 中国科学(A), 2011, 4(11):981-990. (14)M. Zhang, J. Si,Quasi-periodic solutions of nonlinear wave equations with quasi-periodic forcing, Physica D, 2009, 238:2185-2215.
◎学术兼职 美国《数学评论》(Mathematical Reviews, 简称MR)评论员。
|