报告题目:Higher order accurate structure preserving time-implicit discretizations for the nonlinear time-dependent equation
报 告 人: 徐岩教授 中国科学技术大学
报告时间: 2023年8月7日(星期一)上午9:30
报告地点: 文理楼290
报告人简介:
徐岩,中国科学技术大学数学学院教授、博士生导师。主要从事间断有限元方法的研究工作,发表高水平科研论文80余篇。近年来徐岩教授承担国家自然科学基金、中科院、教育部基金、霍英东基金等多相科学基金项目的研究。先后获得教育部新世纪优秀人才支持计划(2009) 、中国科学院/全国博士学位论文奖(2007, 2008)、中国科学技术大学优秀青年教师奖(2010, 2013, 2016) 、优秀研究生指导教师奖(2013,2016)、中国数学会计算数学学会青年创新奖(2016)、国家自然科学基金委优秀青年基金(2017)。担任SIAM Journal on Scientific Computing, Journal of Scientific Computing, Advances in Applied Mathematics and Mechanics, Communication on Applied Mathematics and Computation等杂志的编委。
报告摘要:
In this talk, we discuss local discontinuous Galerkin (LDG) method for solving the nonlinear time-dependent equations. We develop a novel semi-implicit spectral deferred correction (SDC) time marching method. The method can be used in a large class of problems, especially for highly nonlinear ordinary differential equations (ODEs) without easily separating of stiff and non-stiff components, which is more general and efficient comparing with traditional semi-implicit SDC methods. Using Lagrange multipliers the conditions imposed by the positivity preserving limiters are directly coupled to a DG discretization combined with implicit time integration method. The positivity preserving DG discretization is then reformulated as a Karush-Kuhn-Tucker (KKT) problem. We therefore develop an efficient active set semi-smooth Newton method that is suitable for the KKT formulation of time-implicit positivity preserving DG discretizations. Numerical experiments are carried out to illustrate the accuracy and capability of the proposed method.