报告题目:渗流驱动问题的保界间断有限元方法研究
(Bound-preserving discontinuous Galerkin methods for compressible miscible displacements in porous media)
报 告 人:杨扬 副教授 密歇根理工大学数学系
报告时间:2017年6月2日(星期五)下午16:10-17:10
报告地点:文理楼254
报告人简介: 杨扬,博士,密歇根理工大学副教授。2009年毕业于中国科学技术大学数学系;2009-2013年在美国布朗大学应用数学系学习并获博士学位;2013年到密歇根理工大学数学系工作,担任助理教授。同年获得Dunmu Ji Award和Simon Ostrach Fellowship Award。2016年获得New World Mathematics Award, Honorable Mention of PhD thesis。研究方向为间断Galerkin方法,特别是对于有发散精确解的偏微分方程,以及光滑精确解的超收敛估计。其他研究领域包括计算天体物理和等离子体。文章多发表在SIAM J. Numer Anal., Numer. Math., J. Comput. Phys. 等国际著名刊物上。
报告摘要: In this talk, we develop bound-preserving discontinuous Galerkin (DG) methods for the coupled system of compressible miscible displacement problems. We consider the problem with two components and the (volumetric) concentration of the ith component of the fluid mixture, c_i, should be between 0 and 1. Due to the lack of maximum-principle the numerical techniques introduced in (X. Zhang and C.-W. Shu, Journal of Computational Physics, 229 (2010), 3091-3120) cannot be applied directly. The main idea is to apply the positivity-preserving techniques to both c_1 and c_2, respectively and enforce c_1+c_2=1 simultaneously to obtain physically relevant approximations. Several numerical techniques including a new limiter will be introduced. Numerical experiments will be given to demonstrate the good performance of the numerical technique.
欢迎广大师生参加!
理学院 科技处 国际合作与交流处
2017-06-02