学术报告通知:【学术报告】几类典型时间分数阶微分方程的LDG方法研究
发布人:赵振华  发布时间:2019-05-20   浏览次数:193

报告时间:2019526日(周日)上午9:00

报告地点:文理楼254报告厅

报告题目The LDG methods for typical time-fractional partial differential equations

报告人: 李常品 上海大学理学院数学系

 

报告摘要In this talk, we present the local discontinuous Galerkin (LDG) finite element methods for typical time-fractional partial differential equations (TFPDEs): reaction-diffusion equation, reaction-diffusion-wave equation, and cable equation, where the time fractional derivative is in the sense of Caputo. The existence, uniqueness, and regularity of solutions of the above equations are studied. The stability, convergence, and error estimates of the derived DG schemes are displayed. And the numerical examples are also included which support the theoretical analysis.

 

报告人简介:李常品,上海大学教授、博士生导师,其主要研究方向为分数阶偏微分方程数值解法等。2018年入选交叉学科领域“全球高被引科学家”(Clarivate Analytics);在World Scientific编辑专著一部,在Chapman and Hall/CRC出版专著一部。现任Applied Numerical MathematicsFractional Calculus and Applied AnalysisJournal of Nonlinear ScienceMathematics and Computers in Simulations等杂志编委,任德国德古意特系列丛书“应用科学和工程中的分数阶微积分”主编(Editor-in-chief and founding editor of the book series: Fractional Calculus in Applied Sciences and Engineering, De Gruyter, Germany)。两次获上海市自然科学奖(20102017)、上海市优秀博士学位论文指导教师(2016)、获分数阶微积分领域的黎曼-刘维尔理论文章奖(2012)、获宝钢优秀教师奖(2011)

 

理学院、科技处

2019-05-20