报告人:陈传军 教授(烟台大学)
报告时间:2023年3月24日(星期五)16:30—17:30
报告地点:文理楼290室
报告摘要:
In this talk, we develop a novel fully-decoupled numerical technique for the incompressible two-phase flow phase-field model with variable density and viscosity, which can achieve unconditional energy stability while explicitly discretizing nonlinear coupling items. The idea is invented on the basis of combining the Strang operator splitting method and the novel decoupling method using the zero-energy-contribution property. The scheme only needs to solve a series of completely independent linear elliptic equations at each time step, in which the Cahn-Hilliard equation and the pressure Poisson equation are constant coefficient. To demonstrate the effectiveness of the scheme, we provide the rigorous proof of the energy stability/solvability and present some numerical simulations.
报告人简介:
陈传军,烟台大学数学与信息科学学院教授,副院长,硕士生导师,山东省本科教育教学指导委员会委员、山东省黄大年式教师团队成员。主要从事计算数学偏微分方程数值解法、科学工程与计算等领域的研究。现为山东省一流本科专业“信息与计算科学”专业负责人,山东省一流课程《数学建模》负责人,山东省课程思政示范课程负责人,主编教材1部,主持山东省本科高校教改课题重点项目1项,首位获得山东省高等教育教学成果一等奖1项。主持国家自然科学基金面上项目3项,获山东省自然科学二等奖1项,高等学校科学技术奖一等奖2项,在国际期刊J. Comput. Phys.、Comput. Methods Appl. Mech. Engrg、Sci. China Math、J. Comp. Appl. Math等杂志发表学术论文50余篇。
青年学术论坛
理学院