◎研究方向 1.神经网络计算 ◎学习与工作经历 1999.9-2002.7,烟台大学,理学学士; 2002.9-2007.1,大连理工大学,理学博士(硕博连读); 2007.3-2010.11,中国石油大学(华东),应用数学系,讲师; 2010.12-至今,中国石油大学(华东),计算数学系,副教授。 ◎主讲课程 1.主讲本科生《数学分析》、《最优化方法》、《最优化原理》、《线性代数》等课程; 2.主讲研究生《现代数学选讲》、《最优化方法》课程。 ◎承担和参与项目 1.近年来,主持的代表性科研项目: (1)邵红梅,中央高校基本科研业务费资助项目,2013-2014。 2.近年来,参与的代表性科研项目: (1)王健,邵红梅等,山东省自然科学基金面上项目,2018-2021; (2)王健,邵红梅等,国家自然科学基金青年项目,2014-2016; (3)王健,邵红梅等,山东省自然科学基金青年项目,2013-2016。 ◎获奖情况(除教师个人获奖之外,还包含指导学生获奖情况) 1. 获学校教学成果奖,厅局级,2021. 2. 获学校教学成果奖,厅局级,2019. 3. 指导学生获山东省大学生数学竞赛一等奖,省级,2021。 4. 指导学生获全国大学生数学建模竞赛一等奖,省级,2009。 ◎论文 1.第一作者主要论文: (1)H.M. Shao, J. Wang, D.P. Xu, L.J. Liu and W.D. Bao. Relaxed conditions for convergence of batch BPAP for feedforward neural network. Neurocomputing, 153: 174-179, 2015. (2)H.M. Shao, D.P. Xu, G.F. Zheng and L.J. Liu. Convergence of an online gradient method with inner-product penalty and adaptive momentum. Neurocomputing, 77: 243-252, 2012. (3)H.M. Shao, G.F. Zheng. Convergence analysis of a back-propagation algorithm with adaptive momentum. Neurocomputing, 74(5): 749-752, 2011. (4)H.M. Shao, D.P. Xu and G.F. Zheng. Convergence of a batch gradient algorithm with adaptive momentum for neural networks. Neural Process Letters, 34: 221-228, 2011. (5)H.M. Shao, G.F. Zheng. Boundedness and convergence of online gradient method with penalty and momentum, Neurocomputing, 74(5): 765-770, 2011. (6) 邵红梅, 安凤仙. 一类训练前馈神经网络的梯度算法及收敛性,中国石油大学学报(自然科学版), 4: 176-178, 2010. (7) H.M. Shao, W. Wu and L.J. Liu. Convergence of an online gradient algorithm with penalty for two-layer neural networks. Communications in Mathematical Research, 26(1): 67-75, 2010. (8) H.M. Shao, G.F. Zheng. Construction of Bayesian classifiers with GA for response modeling in direct marketing, IEEE Int. Conf. on Computer Science and Information Technology (ICCSIT 2009), 4: 89-92, 2009. (9) H.M. Shao, G.F. Zheng. Convergence of a gradient algorithm with penalty for training two- layer neural networks, WRI Global Congress on Intelligent System (GCIS 2009), IEEE Computer Society Press, 4: 16-20, 2009. (10) H.M. Shao, G.F. Zheng and F.X. An. Construction of Bayesian classifiers with GA for predicting customer retention, IEEE Int. Conf. on Natural Computation (ICNC'08), 1: 181-185, 2008. (11) H.M. Shao, W. Wu and F. Li. Convergence of BP algorithm for training MLP with linear output, 高等学校计算数学学报英文版(Numerical Mathematics: Theory, Methods and Applications), 16(1): 193- 202, 2007. (12) H.M. Shao, W. Wu, F. Li and G.F. Zheng. Convergence of batch gradient algorithm for feedforward neural network training. Journal of Information and Computational Science, 4 (1): 251-255, 2007. 2.第二作者(通讯作者)主要论文: (1) L.J. Liu, H.M. Shao and D. Nan. Recurrent neural network model for computing largest and smallest generalized eigenvalue, Neurocomputing, 71(16-18): 3589-3594, 2008. (2) W. Wu, H.M. Shao and Z.X. Li. Convergence of batch BP algorithm with penalty for FNN training. Lecture Notes in Computer Science, 4232: 562-569, 2006. |