教师简介
 
李燕
当前位置:[首页  教师简介  应用数学系  李燕]

»姓名:李燕

»系属:应用数学系

 


»学位:博士

»职称:副教授

»学科:应用数学

»导师类别:硕导

»电子邮箱:liyan@upc.edu.cn

»联系电话:

»通讯地址:山东省青岛市黄岛区长江西路66号(邮编:266580

»概况

◎研究方向
1.
生态数学中的非线性偏微分方程
2.
非线性动力系统


◎学习与工作经历
   1999.9-2003.7
,烟台师范学院,理学学士;
   2003.9-2006.7
,武汉大学,理学硕士;
   2010.3-2009.8
,哈尔滨工业大学,理学博士;
   2006.7-2016.12
,中国石油大学(华东),应用数学系,讲师;
   2016.12
至今,中国石油大学(华东),应用数学系,副教授。

◎主讲课程
   1.
主讲本科生必修课。《线性代数》《计算方法》《动力系统初步》等课程
   2.
主讲研究生《定性理论》《非线性椭圆型方程组》等课程

◎指导研究生

指导硕士研究生4名,分别是范秀贞(2019)吕志毅(2020)丁梦月(2022)孙嘉宁(2023)。

◎承担和参与项目
   1.
近年来,主持的代表性科研项目:
1)生态学中的趋化模型的整体解和稳态解分析,山东省自然科学基金-面上项目,2022-2024
2)几类偏微分方程组的动力学行为,中央高校基础研究专项基金,2017-2019
3)反应扩散捕食模型的平衡解及分支分析,国家自然科学基金青年基金项目,2016-2018

4)几类反应扩散捕食模型的平衡解分析,中央高校基础研究专项基金,2015-2016
   2.
近年来,参与的代表性科研项目:
1)反应扩散方程组非齐次稳态解的存在性、稳定性及分支研究,山东省自然科学基金-面上项目,2019-2022

2)随机生物数学模型平稳分布及周期解研究,国家自然科学基金青年基金项目,2019-2021

3)变区域上非线性偏微分方程解的动力学行为研究,国家自然科学基金青年基金项目,2017-2019


◎获奖情况(除教师个人获奖之外,还包含指导学生获奖情况)
1.
第十二届山东省大学生数学竞赛(非数学组)山东省一等奖,省部级,2021,指导教师。

2.美国大学生数学建模竞赛H奖,国家级,2022,指导教师。

3.美国大学生数学建模竞赛H奖,国家级,2023,指导教师。

◎论文
   1.
第一作者主要论文:
1Yan Li, Zhiyi Lv, Fengrong Zhang, Hui Hao,
Bifurcation analysis of a diffusive predator–prey model with hyperbolic mortality and prey-taxis.International Journal of Biomathematics, 2024(17)
2Yan Li, Zhiyi lv, Xiuzhen Fan, Bifurcations of a diffusive predator–prey model with prey-stage structure and prey-taxisMathematical Methods in the Applied Science202346
3Yan Li, Sanyun Li, Fengrong Zhang, Dynamics of a diffusive predator-prey model with herd behavior. Nonlinear Analysis: Modelling and Control, 2020(25)

4Yan Li, Sanyun Li, Jingfu Zhao. Global stability and Hopf bifurcation of a diffusive   predator-prey model with hyperbolic mortality and prey harvesting, Nonlinear Analysis: Modelling and Control, 2017(22)

5Yan Li, Hopf bifurcations in general systems of Brusselator typeNonlinear Analysis: Real World Applications,201628

6Yan LiDynamics of a delayed diffusive predator-prey model with hyperbolic mortalityNonlinear Dynamics,201685

7Yan LiXinhong Zhang, Bingchen Liu, Global stability and stationary pattern of a diffusive prey-predator model with modified Leslie-Gower term and Holling II functional response,  Journal of Nonlinear Science and Applications, 2016(9):

8Yan Li, Mingxin Wang, Dynamics of a Diffusive Predator-Prey Model with Modified Leslie-Gower Term and Michaelis-Menten Type Prey Harvesting, Acta Applicandae Mathematicae,2015140

9Yan Li, Mingxin Wang, Hopf bifurcation and global stability of a delayed predator-rey model with prey harvesting, Computers and Mathematics with Applications, 201569

10Yan Li, Mingxin WangStationary pattern of a diffusive preypredator model with trophic intersections of three levelsNonlinear Analysis: Real World Applications201314

11Yan LiSteady-state solution for a general Schnakenberg model, Nonlinear Analysis: Real World Applications201112

12Yan Li, Non-uniform dependence for the Cauchy problem of the general b-equation, Journal of Mathematical Physics, 201152

13)李燕,刘伟安,黄启华, 一类具有无穷时滞竞争扩散模型的周期解的存在性,数学杂志,2007(27)

14)李燕,刘伟安,孔杨, Existence of solution for predator-prey system with size-structure,数学杂志,201030

 

2.第二作者(通讯作者)主要论文:
1Xiuzhen Fan, Feng Zhou, Yan Li, Stationary pattern and Hopf bifurcation of a diffusive predator–prey model, Applicable Analysis,2022(102)   
2Fengrong Zhang,Yan Li. Stability and Hopf bifurcation of a delayed-diffusive predator-prey model with hyperbolic mortality and nonlinear prey harvesting. Nonlinear Dynamics.   2017(88)

3Min Zhang,Yi Wang,Yan Li, Reducibility and quasi-periodic solutions for a two dimensional beam equation with quasi-periodic in time potential. AIMS Mathematics, 20206

4Fengrong Zhang ,Yan Li,Changpin LiHopf bifurcation in a delayed diffusive Leslie-gower predator-prey model with herd behavior. International Journal of Bifurcation and Chaos. 201929

5Fengrong Zhang, Xinhong Zhang,Yan Li,Changpin Li, Hopf bifurcation of a delayed predator-prey model with non-constant death rate and constant-rate prey-harvesting. International Journal of Bifurcation and Chaos, 2018(28)

6Xinhong Zhang, Yan Li, Daqing Jiang,Dynamics of a stochastic Holling type II predator-prey model with hyperbolic mortality, Nonlinear Dynamics.2016.

7Mingchuan Li, Shuanshi Fan, Yuliang Su, Fuhai Xu,Yan Li,Mingjing Lu, Guanglong Sheng, Ke Yan. The Stefan moving boundary model for the heat-dissociation hydrate with a density difference. Energy. 2018160

8Weigang Wang,Yan Li, Dihe Hu. Existence of population-size-dependent branching chains in random environments,Acta Mathematica Scientia, 2010(30)

 

◎著作
   1.
王光辉,张天德,孙钦福,谭蕾,李燕,周峰,《经济数学-线性代数》,名师名校新形态通识教育系列教材,人民邮电出版社,2022年。


◎学术兼职

担任多个SCI期刊审稿人。